Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.01.433130

ABSTRACT

The current worldwide pandemic COVID-19 is causing severe human health problems, with high numbers of mortality rates and huge economic burdens that require an urgent demand for safe, and effective and vaccine development. Our study was the first trail to development and evaluation of safety and immune response to inactivated whole SARS-COV-2 virus vaccine adjuvanted with aluminium hydroxide. We used characterized SARS-COV-2 strain, severe acute respiratory syndrome coronavirus 2 isolates (SARS-CoV-2/human/EGY/Egy-SERVAC/2020) with accession numbers; MT981440; MT981439; MT981441; MT974071; MT974069 and MW250352 at GenBank that isolated from Egyptian patients SARS-CoV-2-positive. Development of the vaccine was carried out in a BSL - 3 facilities and the immunogenicity was determined in mice at two doses (55{micro}g and 100{micro}g per dose). All vaccinated mice were received a booster dose 14 days post first immunization. Our results demonstrated distinct cytopathic effect on the vero cell monolayers induced through SARS-COV-2 propagation and the viral particles were identified as Coronaviridae by transmission electron microscopy. SARS-CoV-2 was identified by RT-PCR performed on the cell culture. Immunogenicity of the developed vaccine indicated the high antigen-binding and neutralizing antibody titers, regardless the dose concentration, with excellent safety profiles.However, no deaths or clinical symptoms in mice groups. The efficacy of the inactivated vaccine formulation was tested by wild virus challenge the vaccinated mice and detection of viral replication in lung tissues. Vaccinated mice recorded complete protection from challenge infection three weeks post second dose. SARS-COV-2 replication was not observed in the lungs of mice following SARS-CoV-2 challenge, regardless of the level of serum neutralizing antibodies. This finding will support the future trials for evaluation an applicable SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.07.367649

ABSTRACT

The current pandemic of the coronavirus disease-2019 (COVID-19) has badly affected our life during the year 2020. SARS-CoV-2 is the primary causative agent of the newly emerged pandemic. Natural flavonoids, Terpenoid and Thymoquinone are tested against different viral and host-cell protein targets. These natural compounds have a good history in treating Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). Molecular docking combined with cytotoxicity and plaque reduction assay is used to test the natural compounds against different viral (Spike, RdRp, and Mpro) and host-cell (TMPRSS II, keap 1, and ACE2) targets. The results demonstrate the binding possibility of the natural compounds (Thymol, Carvacrol, Hesperidine, and Thymoquinone) to the viral main protease (Mpro). Some of these natural compounds were approved to start clinical trail from Egypt Center for Research and Regenerative Medicine ECRRM IRB (Certificate No.IRB00012517)


Subject(s)
HIV Infections , Drug-Related Side Effects and Adverse Reactions , COVID-19 , Hepatitis C
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.368431

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 causes the novel pandemic Pneumonia disease. It is a positive single strand ssRNA virus that infect human. COVID-19 appeared in Egypt in Feb 2020. The samples were taken from patients with COVID-19 symptoms at military hospital in Egypt and transported to the main chemical laboratories under all the biosafety measures according to WHO guidelines. All samples were tested with RT-PCR. Positive samples were cultured using VeroE6 cell lines. The propagated virus was isolated and inactivated. The isolated virus was sequenced using next generation sequencing and submitted into gene bank. This study provides an isolation, propagation and inactivation methodology which is valuable for production of inactivated vaccines against SARS-CoV2 in Egypt.


Subject(s)
COVID-19 , Pneumonia , Severe Acute Respiratory Syndrome
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20211771

ABSTRACT

Coronavirus pandemic that caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) appeared in China in 2019 then spread all over the world. COVID-19 firstly appeared in Egypt in Feb 2020. Studies on the thermal stability of the virus is crucial proper specimens transportation for molecular study. Oropharyngeal swabs were taken from recently infected military people with COVID-19 from Egypt during April 2020. Samples were aliquoted and the thermal stability of the virus was measured using quantitative real Time RT-PCR for samples treated at different temperature ranges from 20 C to 70 C for 2,4and 6 hours. Results shown that inactivation of the virus and significant reduction in the {Delta}Cq values begin at 40 C/4h. Complete virus inactivation and loss of {Delta}Cq values were seen at 50 C/6h and 60 C. Tested samples showed no significant difference in thermal stability at any temp/time combinations tested.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL